Resumo
Introdução: O estresse durante a pilotagem de aeronaves influencia a saúde e desempenho dos pilotos. Pesquisas sobre a influência da carga de trabalho durante voos militares sobre esses desfechos são necessárias.
Objetivo: Esse estudo investigou os efeitos da carga trabalho percebida durante voos de transporte militar sobre a modulação autonômica e desempenho cognitivo de pilotos em treinamento da Força Aérea Brasileira.
Métodos: Estudo observacional transversal do qual participaram 15 pilotos. A carga de trabalho percebida foi avaliada pelo inventário NASA-TLX. foi examinada a modulação autonômica durante os voos e o desempenho cognitivo antes e após os voos.
Resultados: A carga de trabalho dos voos foi moderada (~5 pontos), com contribuição cinco vezes maior da ‘demanda mental’ vs. ‘física’. Os voos acarretaram aumentos de 2-3 vezes na modulação simpática, com alterações autonômicas médias 50% maiores em P1 que P2. Correlações entre NASA-TLX e modulação simpática foram inversas vs. ‘demanda física’ e ‘carga total’ (rs= -0.52/-0.63) e direta vs. ‘demanda mental’ (rs=0.57), o oposto ocorrendo para a modulação parassimpática (rs=0.47/0.59; rs= -0.45/-0.47; p<0.05). O desempenho cognitivo permaneceu inalterado e não se correlacionou com os componentes do NASA-TLX.
Conclusão: Uma maior percepção da carga de trabalho durante voos militares de transporte acarretou aumento na modulação simpática e redução parassimpática, mas não influenciou no desempenho cognitivo.
Referências
Sauvet F, Jouanin JC, Langrume C, et al. Heart rate variability in novice pilots during and after a multi-leg cross-country flight. Aviation, Space, and Environmental Medicine 2009; 80: 862-869. 2009/10/13. DOI: 10.3357/asem.2531.2009.
Chandra A and Conry S. In-flight Medical Emergencies. Western Journal of Emergency Medicine 2013; 14: 499-504. 2013/10/10. DOI: 10.5811/westjem.2013.4.16052.
Boyd JE, Patterson JC, and Thompson BT. Psychological test profiles of USAF pilots before training vs. type aircraft flown. Aviation, Space, and Environmental Medicine 2005; 76: 463-468.
Bustamante-Sánchez A, Tornero-Aguilera JF, Fernández-Elías VE, et al. Effect of Stress on Autonomic and Cardiovascular Systems in Military Population: A Systematic Review. Cardiology Research and Practice 2020; 2020: 7986249. DOI: 10.1155/2020/7986249.
Tomes C, Schram B and Orr R. Relationships Between Heart Rate Variability, Occupational Performance, and Fitness for Tactical Personnel: A Systematic Review. Frontiers in Public Health 2020; 8: 583336. DOI: 10.3389/fpubh.2020.583336.
Sukhoterin A and Pashchenko P. Structural and functional reserves of the autonomic nervous system in pilots of high-maneuver aircrafts. Human Physiology 2016; 42: 731-735. DOI: 10.1134/S0362119716070173.
Otsuka Y, Onozawa A, Kikukawa A, et al. Effects of flight workload on urinary catecholamine responses in experienced military pilots. Perceptual and Motor Skills 2007; 105: 563-571. 2007/12/11. DOI: 10.2466/pms.105.2.563-571.
Skibniewski FW, Dziuda Ł, Baran PM, et al. Preliminary results of the LF/HF ratio as an indicator for estimating difficulty level of flight tasks. Aerospace Medicine and Human Performance 2015; 86: 518-523. DOI: 10.3357/AMHP.4087.2015.
Svensson E, Thanderz MA, Sjoberg L, et al. Military flight experience and sympatho-adrenal activity. Aviation, Space, and Environmental Medicine 1988; 59: 411-416. 1988/05/01.
Okawa N, Kuratsune D, Koizumi J, et al. Application of autonomic nervous function evaluation to job stress screening. Heliyon 2019; 5: e01194. 2019/03/07. DOI: 10.1016/j.heliyon.2019.e01194.
Thayer JF, Yamamoto SS and Brosschot JF. The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. International Journal of Cardiology 2010; 141: 122-131. 2009/11/17. DOI: 10.1016/j.ijcard.2009.09.543.
Oliveira-Silva I, Leicht AS, Moraes MR, et al. Heart Rate and Cardiovascular Responses to Commercial Flights: Relationships with Physical Fitness. Frontiers in Physiology 2016; 7: 648. 2017/01/14. DOI: 10.3389/fphys.2016.00648.
Backs RW, Lenneman JK and Sicard JL. The Use of Autonomic Components to Improve Cardiovascular Assessment of Mental Workload in Flight. International Journal of Aviation Psychology 1999; 9: 33-47. DOI: 10.1207/s15327108ijap0901_3.
Noyes JM and Bruneau DP. A self-analysis of the NASA-TLX workload measure. Ergonomics 2007; 50: 514-519. 2007/06/20. DOI: 10.1080/00140130701235232.
Casner SM and Gore BF. Measuring and Evaluating Workload: A primer. Moffett Field, CA: NASA, 2010, p.2010.
Lezak MD, Howieson DB and Bigler ED. Neuropsychological Assessment. 5 ed. New York, NY: Oxford University Press, 2012.
Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation 1996; 93: 1043-1065. DOI: 10.1161/01.CIR.93.5.1043.
Arikan ZO, Ertemir D and Keskinkilic C. A norm study of a neuropsychological test battery for evaluating cognitive functions in commercial airline pilots. Dusunen Adam The Journal of Psychiatry and Neurological Sciences 2018; 31: 375-388. DOI: 10.5350/DAJPN2018310406.
Din NC and Tat Meng EC. Computerized Stroop Tests: A Review. Journal of Psychology and Psychotherapy 2019; 9: 1000353. DOI: 10.4172/2161-0487.1000353.
Mansikka H, Virtanen K and Harris D. Comparison of NASA-TLX scale, modified Cooper–Harper scale and mean inter-beat interval as measures of pilot mental workload during simulated flight tasks. Ergonomics 2019; 62: 246-254. DOI: 10.1080/00140139.2018.1471159.
Zheng Y, Lu Y, Jie Y, et al. Predicting Workload Experienced in a Flight Test by Measuring Workload in a Flight Simulator. Aerospace Medicine and Human Performance 2019; 90: 618-623. 2019/06/23. DOI: 10.3357/AMHP.5350.2019.
Rainieri G, Fraboni F, Russo G, et al. Visual Scanning Techniques and Mental Workload of Helicopter Pilots During Simulated Flight. Aerospace Medicine and Human Performance 2020; 92: 11-19. DOI: 10.3357/AMHP.5681.2021.
Wanyan X, Zhuang D and Zhang H. Improving pilot mental workload evaluation with combined measures. Bio-Medical Materials and Engineering 2014; 24: 2283-2290. 2014/09/18. DOI: 10.3233/BME-141041.
Orlandi L and Brooks B. Measuring mental workload and physiological reactions in marine pilots: Building bridges towards redlines of performance. Applied Ergonomics 2018; 69: 74-92. 2018/02/27. DOI: 10.1016/j.apergo.2018.01.005.
Hart, SG. Nasa-Task Load Index (NASA-TLX); 20 Years Later. Proceedings of the Human Factors and Ergonomics Society Annual Meeting 2006; 50(9), 904–908. DOI:10.1177/154193120605000909.
Grier, RA. How High is High? A Meta-Analysis of NASA-TLX Global Workload Scores. Proceedings of the Human Factors and Ergonomics Society Annual Meeting 2015; 59(1), 1727–1731. DOI:10.1177/1541931215591373.
Siri WE, Brozek J and Henschel A. Body composition from fluid space and density. In: Brozek J and Hanschel A (eds) Techniques for measuring body composition Washington, DC: National Academy of Science, 1961, pp.223-244.
Leger LA, Mercier D, Gadoury C, et al. The multistage 20 metre shuttle run test for aerobic fitness. Journal of Sports Sciences 1988; 6: 93-101. 1988/01/01. DOI: 10.1080/02640418808729800.
Gaetan S, Dousset E, Marqueste T, et al. Cognitive Workload and Psychophysiological Parameters During Multitask Activity in Helicopter Pilots. Aerospace Medicine and Human Performance 2015; 86: 1052-1057. 2015/12/03. DOI: 10.3357/AMHP.4228.2015.
Baumer MH. Avaliação da carga mental de trabalho em pilotos da aviação militar. Master Dissertation, Universidade Federal de Santa Catarina (UFCS), Florianópolis, 2003.
Bezerra FGV and Ribeiro SLO. Preliminary study of the pilot’s workload during emergency procedures in helicopters air operations. Work 2012; 41: 225-231. DOI: 10.3233/WOR-2012-0161-225.
Miller DB and O'Callaghan JP. Neuroendocrine aspects of the response to stress. Metabolism 2002; 51: 5-10. 2002/06/01. DOI: 10.1053/meta.2002.33184.
Segerstrom SC and Nes LS. Heart rate variability reflects self-regulatory strength, effort, and fatigue. Psychological Science 2007; 18: 275-281. 2007/04/21. DOI: 10.1111/j.1467-9280.2007.01888.x.
Tanaka M, Mizuno K, Yamaguti K, et al. Autonomic nervous alterations associated with daily level of fatigue. Behavioral and Brain Functions 2011; 7: 46. 2011/10/29. DOI: 10.1186/1744-9081-7-46.
Mizuno K, Tanaka M, Yamaguti K, et al. Mental fatigue caused by prolonged cognitive load associated with sympathetic hyperactivity. Behavioral and Brain Functions 2011; 7: 17. 2011/05/25. DOI: 10.1186/1744-9081-7-17.
Shaffer F, McCraty R and Zerr CL. A healthy heart is not a metronome: an integrative review of the heart's anatomy and heart rate variability. Frontiers in Psychology 2014; 5: 1040. DOI: 10.3389/fpsyg.2014.01040.
Fuentes-García JP, Clemente-Suárez VJ, Marazuela-Martínez MÁ, et al. Impact of real and simulated flights on psychophysiological response of military pilots. International Journal of Environmental Research and Public Health 2021; 18: 787. DOI: 10.3390/ijerph18020787.
Mansikka H, Simola P, Virtanen K, et al. Fighter pilots’ heart rate, heart rate variation and performance during instrument approaches. Ergonomics 2016; 59: 1344-1352. DOI: 10.1080/00140139.2015.1136699.
Lee YH and Liu BS. Inflight workload assessment: comparison of subjective and physiological measurements. Aviation, Space, and Environmental Medicine 2003; 74: 1078-1084. 2003/10/15.
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.