Associação de variáveis antropométricas e cardiorrespiratórias com consumo de oxigênio de pico segundo características da lesão medular: um estudo seccional preliminar
pdf

Palavras-chave

deficiência física
aptidão cardiorrespiratória
composição corporal
reabilitação

Como Citar

de Souza, K. P., Mainenti, M. R. M., & Vigário, P. dos S. (2024). Associação de variáveis antropométricas e cardiorrespiratórias com consumo de oxigênio de pico segundo características da lesão medular: um estudo seccional preliminar. Revista De Educação Física / Journal of Physical Education, 93(1), 26–34. https://doi.org/10.37310/ref.v93i1.2980

Resumo

Introdução: A estimativa do consumo de oxigênio de pico (VO2pico) deve incluir variáveis que representem as características da população avaliada.

Objetivo: Examinar a associação de variáveis antropométricas, de esforço cardiorrespiratório e de características específicas da lesão medular (LM) com o VO2pico em homens.

Métodos: Estudo observacional seccional com nove homens com LM alta incompleta: tetraplegia (grupo TETRA) e 08 com LM baixa completa: paraplegia (grupo PARA). A aptidão cardiorrespiratória foi avaliada pelo teste cardiopulmonar de esforço em cicloergômetro para membros superiores, sendo considerados no pico do esforço: VO2pico (L/min), carga (w) e frequência cardíaca (bpm). Para a composição corporal foram considerados: somatório de 4 dobras cutâneas (mm), massa corporal total (kg) e perímetro muscular de braço (cm). Como variável relativa à LM foi considerado o nível/ altura da LM (grupo). Um modelo de regressão linear multivariado com método “Backward” (α=5%) foi feito para a determinação do VO2pico (IBM SPSS 27.0).

Resultados: As variáveis antropométricas consideradas não se correlacionaram com o VO2pico. A análise multivariada resultou no modelo F(2,14) = 25,25; p<0,001; R2=0,783, com a equação: VO2pico=0,134+0,256* grupo (TETRA=0; PARA=1)+0,014*carga (w), sendo a carga a variável mais importante para a determinação do VO2pico.

Conclusão: Neste estudo preliminar, a carga e a altura/nível da LM foram as variáveis que melhor determinaram o VO2pico, enquanto as variáveis antropométricas não se correlacionaram com o VO2pico.

https://doi.org/10.37310/ref.v93i1.2980
pdf

Referências

Wecht JM, Harel NY, Guest J, Kirshblum SC, Forrest GF, Bloom O, et al. Cardiovascular Autonomic Dysfunction in Spinal Cord Injury: Epidemiology, Diagnosis, and Management. Seminars in neurology. 2020;40(5): 550–559. https://doi.org/10.1055/s-0040-1713885.

Budd MA, Gater DRJ, Channell I. Psychosocial Consequences of Spinal Cord Injury: A Narrative Review. Journal of personalized medicine. 2022;12(7). https://doi.org/10.3390/jpm12071178.

Ahuja CS, Wilson JR, Nori S, Kotter MRN, Druschel C, Curt A, et al. Traumatic spinal cord injury. Nature reviews. Disease primers. 2017;3: 17018. https://doi.org/10.1038/nrdp.2017.18.

Quadri SA, Farooqui M, Ikram A, Zafar A, Khan MA, Suriya SS, et al. Recent update on basic mechanisms of spinal cord injury. Neurosurgical review. 2020;43(2): 425–441. https://doi.org/10.1007/s10143-018-1008-3.

Phillips AA, Krassioukov A V. Contemporary Cardiovascular Concerns after Spinal Cord Injury: Mechanisms, Maladaptations, and Management. Journal of neurotrauma. 2015;32(24): 1927–1942. https://doi.org/10.1089/neu.2015.3903.

Draghici AE, Taylor JA. Baroreflex autonomic control in human spinal cord injury: Physiology, measurement, and potential alterations. Autonomic neuroscience : basic & clinical. 2018;209: 37–42. https://doi.org/10.1016/j.autneu.2017.08.007.

Gee CM, West CR, Krassioukov A V. Boosting in Elite Athletes with Spinal Cord Injury: A Critical Review of Physiology and Testing Procedures. Sports medicine (Auckland, N.Z.). 2015;45(8): 1133–1142. https://doi.org/10.1007/s40279-015-0340-9.

Hunt C, Moman R, Peterson A, Wilson R, Covington S, Mustafa R, et al. Prevalence of chronic pain after spinal cord injury: a systematic review and meta-analysis. Regional anesthesia and pain medicine. 2021;46(4): 328–336. https://doi.org/10.1136/rapm-2020-101960.

Adachi H. Cardiopulmonary Exercise Test. International heart journal. 2017;58(5): 654–665. https://doi.org/10.1536/ihj.17-264.

Rossi Neto JM, Tebexreni AS, Alves ANF, Smanio PEP, de Abreu FB, Thomazi MC, et al. Cardiorespiratory fitness data from 18,189 participants who underwent treadmill cardiopulmonary exercise testing in a Brazilian population. PloS one. 2019;14(1): e0209897. https://doi.org/10.1371/journal.pone.0209897.

Hackett DA. Lung Function and Respiratory Muscle Adaptations of Endurance- and Strength-Trained Males. Sports (Basel, Switzerland). 2020;8(12). https://doi.org/10.3390/sports8120160.

Khan H, Jaffar N, Rauramaa R, Kurl S, Savonen K, Laukkanen JA. Cardiorespiratory fitness and nonfatalcardiovascular events: A population-based follow-up study. American heart journal. 2017;184: 55–61. https://doi.org/10.1016/j.ahj.2016.10.019.

Glaab T, Taube C. Practical guide to cardiopulmonary exercise testing in adults. Respiratory research. 2022;23(1): 9. https://doi.org/10.1186/s12931-021-01895-6.

Ferguson M, Shulman M. Cardiopulmonary Exercise Testing and Other Tests of Functional Capacity. Current anesthesiology reports. 2022;12(1): 26–33. https://doi.org/10.1007/s40140-021-00499-6.

DeCato TW, Haverkamp H, Hegewald MJ. Cardiopulmonary Exercise Testing (CPET). American journal of respiratory and critical care medicine. 2020;201(1): P1–P2. https://doi.org/10.1164/rccm.2011P1.

McMillan DW, Nash MS, Gater DRJ, Valderrábano RJ. Neurogenic Obesity and Skeletal Pathology in Spinal Cord Injury. Topics in spinal cord injury rehabilitation. 2021;27(1): 57–67. https://doi.org/10.46292/sci20-00035.

Tweedy SM, Beckman EM, Geraghty TJ, Theisen D, Perret C, Harvey LA, et al. Exercise and sports science Australia (ESSA) position statement on exercise and spinal cord injury. Journal of science and medicine in sport. 2017;20(2): 108–115. https://doi.org/10.1016/j.jsams.2016.02.001.

Winkert K, Kirsten J. Cardiopulmonary exercise testing – methodological aspects. Deutsche Zeitschrift für Sportmedizin/German Journal of Sports Medicine. 2022;73(5): 184–188. https://doi.org/10.5960/dzsm.2022.538.

Campos LFCC de. Comparação entre métodos para mensuração da potência aeróbia em atletas tetraplégicos. Universidade Estadual de Campinas; 2013.

American College of Sports Medicine. Diretrizes do ACSM para os testes de esforço e sua prescrição.. 8th ed. Rio de Janeiro: Guanabara Koogan; 2011.

ISAK (International Society for the Advancement of Kinanthropometry). International Standards for Anthropometric Assessment. Australia: ISAK; 2001.

Gurney JM, Jelliffe DB. Arm anthropometry in nutritional assessment: nomogram for rapid calculation of muscle circumference and cross-sectional muscle and fat areas. The American journal of clinical nutrition. 1973;26(9): 912–915. https://doi.org/10.1093/ajcn/26.9.912.

Sawilowsky SS. New Effect Size Rules of Thumb. Journal of Modern Applied Statistical Methods. 2009;8(2): 597–599. https://doi.org/10.22237/jmasm/1257035100.

Hinkle DE, Wiersma W JS. Applied Statistics for the Behavioral Sciences.. 5th ed. Boston: Houghton Mifflin; 2003.

Lee BS, Bae JH, Choi YJ, Lee JA. Predicting Maximum Oxygen Uptake from Non-Exercise and Submaximal Exercise Tests in Paraplegic Men with Spinal Cord Injury. Healthcare (Basel, Switzerland). 2023;11(5). https://doi.org/10.3390/healthcare11050763.

Raguindin PF, Bertolo A, Zeh RM, Fränkl G, Itodo OA, Capossela S, et al. Body Composition According to Spinal Cord Injury Level: A Systematic Review and Meta-Analysis. Journal of clinical medicine. 2021;10(17). https://doi.org/10.3390/jcm10173911.

Guest J, Datta N, Jimsheleishvili G, Gater DRJ. Pathophysiology, Classification and Comorbidities after Traumatic Spinal Cord Injury. Journal of personalized medicine. 2022;12(7). https://doi.org/10.3390/jpm12071126.

Åstrand P, Rodahl K. Textbook of work physiology. New York, NY, US: McGraw-Hill; 1986.

American College of Sports Medicine. Guidelines for exercise testing and exercise prescription. Philadelphia: Lea & Febiger; 1980.

Balke B, Ware RW. An experimental study of physical fitness of Air Force personnel. United States Armed Forces medical journal. 1959;10(6): 675–688.

Herrmann KH, Kirchberger I, Biering-Sørensen F, Cieza A. Differences in functioning of individuals with tetraplegia and paraplegia according to the International Classification of Functioning, Disability and Health (ICF). Spinal cord. 2011;49(4): 534–543. https://doi.org/10.1038/sc.2010.156.

Au JS, Sithamparapillai A, Currie KD, Krassioukov A V, MacDonald MJ, Hicks AL. Assessing Ventilatory Threshold in Individuals With Motor-Complete Spinal Cord Injury. Archives of physical medicine and rehabilitation. 2018;99(10): 1991–1997. https://doi.org/10.1016/j.apmr.2018.05.015.

Hooker SP, Greenwood JD, Hatae DT, Husson RP, Matthiesen TL, Waters AR. Oxygen uptake and heart rate relationship in persons with spinal cord injury. Medicine and science in sports and exercise. 1993;25(10): 1115–1119.

Leicht CA, Bishop NC, Goosey-Tolfrey VL. Submaximal exercise responses in tetraplegic, paraplegic and non spinal cord injured elite wheelchair athletes. Scandinavian journal of medicine & science in sports. 2012;22(6): 729–736. https://doi.org/10.1111/j.1600-0838.2011.01328.x.

Miller LE, Herbert WG. Health and economic benefits of physical activity for patients with spinal cord injury. Clinic Economics and outcomes research : CEOR. 2016;8: 551–558. https://doi.org/10.2147/CEOR.S115103.

Creative Commons License
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 Revista de Educação Física / Journal of Physical Education