Estimulação Transcraniana por Corrente Contínua sobre força de membros inferiores e desempenho na corrida de 5.000m: um estudo experimental
pdf

Palavras-chave

neurociência
esporte
alto rendimento
atletas
desempenho

Como Citar

Alves Filho, E. M. A., Fernanda dos Santos, L., de Carvalho Martins, J. C., Santos de Sousa Fernandes, M., Reis do Nascimento, H., Reis do Nascimento, I., José Aidar Martins, F., & Fabrício de Souza, R. (2024). Estimulação Transcraniana por Corrente Contínua sobre força de membros inferiores e desempenho na corrida de 5.000m: um estudo experimental. Revista De Educação Física / Journal of Physical Education, 92(4), 438–445. https://doi.org/10.37310/ref.v92i4.2951

Resumo

Introdução: A estimulação transcraniana de corrente contínua (ETCC) na função cerebral é descrita com indicativos de que influencie na excitabilidade cortical do indivíduo, induzindo alterações positivas nas áreas cognitivas e motoras. Assim a ETCC poderia ser identificada como recurso ergogênicos no meio esportivo, na busca por melhores resultados.

Objetivo: Explorar o efeito agudo da ETCC aplicado em corredores de 5.000m.

Métodos: Estudo experimental, controlado por Sham (efeito placebo), cego, em atletas de corrida de 5.000m, do sexo masculino, com idades de 18 a 32 anos. Dezoito atletas foram randomizados nos grupos Anodal (n=9, 29±7 anos, 63±8kg) e Sham (n=9, 25±4 anos, 67±12 Kg). Foram avaliados tempo total da corrida (t) e o torque de pico (Pt) em um momento pré e pós-estimulação.

Resultados: O tempo de corrida, velocidade do grupo Anodal foi menor em comparação com o grupo Sham (p=0,02; IC95% 0,11–2,32; d=1,24) e (p=0,02, IC95% 0,05–2,20; d=1,15) respectivamente. Entretanto, nenhuma diferença foi encontrada em Pt (p=0,70).

Conclusão: Os achados indicaram que a ETCC pode contribuir para otimizar, de forma aguda, o tempo/a velocidade de corredores de 5.000m.

https://doi.org/10.37310/ref.v92i4.2951
pdf

Referências

. Angius L, Mauger AR, Hopker J, Pascual-Leone A, Santarnecchi E, Marcora SM. Bilateral extracephalic transcranial direct current stimulation improves endurance performance in healthy individuals. Brain Stimulation. 2018;11(1): 108–117. https://doi.org/10.1016/j.brs.2017.09.017.

Ardolino G, Bossi B, Barbieri S, Priori A. Non-synaptic mechanisms underlie the after-effects of cathodal transcutaneous direct current stimulation of the human brain. The Journal of Physiology. 2005;568(Pt 2): 653–663. https://doi.org/10.1113/jphysiol.2005.088310.

Nitsche MA, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology. 2001;57(10): 1899–1901. https://doi.org/10.1212/WNL.57.10.1899.

Stagg CJ, Antal A, Nitsche MA. Physiology of Transcranial Direct Current Stimulation. The journal of ECT. 2018;34(3): 144–152. https://doi.org/10.1097/YCT.0000000000000510.

Santarnecchi E, Brem AK, Levenbaum E, Thompson T, Kadosh RC, Pascual-Leone A. Enhancing cognition using transcranial electrical stimulation. Current Opinion in Behavioral Sciences. 2015;4: 171–178. https://doi.org/10.1016/j.cobeha.2015.06.003.

Colzato LS, Nitsche MA, Kibele A. Noninvasive Brain Stimulation and Neural Entrainment Enhance Athletic Performance—a Review. Journal of Cognitive Enhancement. 2017;1(1): 73–79. https://doi.org/10.1007/s41465-016-0003-2.

Vitor-Costa M, Pereira LA, Montenegro RA, Okano AH, Altimari LR. A estimulação transcraniana por corrente contínua como recurso ergogênico: uma nova perspectiva no meio esportivo. Revista da Educação Física / UEM. 2012;23: 167–174. https://doi.org/10.4025/reveducfis.v23i2.10670.

Lefaucheur JP, Antal A, Ayache SS, Benninger DH, Brunelin J, Cogiamanian F, et al. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clinical Neurophysiology. 2017;128(1): 56–92. https://doi.org/10.1016/j.clinph.2016.10.087.

Lattari E, Campos C, Lamego MK, Legey S, Neto GM, Rocha NB, et al. Can Transcranial Direct Current Stimulation Improve Muscle Power in Individuals With Advanced Weight-Training Experience? Journal of Strength and Conditioning Research. 2020;34(1): 97–103. https://doi.org/10.1519/JSC.0000000000001956.

Abdelmoula A, Baudry S, Duchateau J. Anodal transcranial direct current stimulation enhances time to task failure of a submaximal contraction of elbow flexors without changing corticospinal excitability. Neuroscience. 2016;322: 94–103. https://doi.org/10.1016/j.neuroscience.2016.02.025.

Uehara L, Boari Coelho D, Leal-Junior ECP, Vicente de Paiva PR, Batista AF, Duarte Moreira RJ, et al. Effects of Transcranial Direct Current Stimulation on Muscle Fatigue in Recreational Runners: Randomized, Sham-Controlled, Triple-Blind, Crossover Study—Protocol Study. American Journal of Physical Medicine & Rehabilitation. 2022;101(3): 279. https://doi.org/10.1097/PHM.0000000000001721.

Mesquita PHC, Lage GM, Franchini E, Romano-Silva MA, Albuquerque MR. Bi-hemispheric anodal transcranial direct current stimulation worsens taekwondo-related performance. Human Movement Science. 2019;66: 578–586. https://doi.org/10.1016/j.humov.2019.06.003.

Romero-Arenas S, Calderón-Nadal G, Alix-Fages C, Jerez-Martínez A, Colomer-Poveda D, Márquez G. Transcranial Direct Current Stimulation Does Not Improve Countermovement Jump Performance in Young Healthy Men. Journal of Strength and Conditioning Research. 2021;35(10): 2918–2921. https://doi.org/10.1519/JSC.0000000000003242.

Adams GR, Harris RT, Woodard D, Dudley GA. Mapping of electrical muscle stimulation using MRI. Journal of Applied Physiology. 1993;74(2): 532–537. https://doi.org/10.1152/jappl.1993.74.2.532.

Vitor-Costa M, Okuno NM, Bortolotti H, Bertollo M, Boggio PS, Fregni F, et al. Improving Cycling Performance: Transcranial Direct Current Stimulation Increases Time to Exhaustion in Cycling. PloS One. 2015;10(12): e0144916. https://doi.org/10.1371/journal.pone.0144916.

Kamali AM, Kazemiha M, Keshtkarhesamabadi B, Daneshvari M, Zarifkar A, Chakrabarti P, et al. Simultaneous transcranial and transcutaneous spinal direct current stimulation to enhance athletic performance outcome in experienced boxers. Scientific Reports. 2021;11(1): 19722. https://doi.org/10.1038/s41598-021-99285-x.

Klem GH, Lüders HO, Jasper HH, Elger C. The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology. Electroencephalography and Clinical Neurophysiology. Supplement. 1999;52: 3–6.

Li LM, Uehara K, Hanakawa T. The contribution of interindividual factors to variability of response in transcranial direct current stimulation studies. Frontiers in Cellular Neuroscience. 2015;9: 181. https://doi.org/10.3389/fncel.2015.00181.

Park I, Kim Y, Kim SK. Athlete-Specific Neural Strategies under Pressure: A fNIRS Pilot Study. International Journal of Environmental Research and Public Health. 2020;17(22): 8464. https://doi.org/10.3390/ijerph17228464.

Baldari C, Buzzachera CF, Vitor-Costa M, Gabardo JM, Bernardes AG, Altimari LR, et al. Effects of Transcranial Direct Current Stimulation on Psychophysiological Responses to Maximal Incremental Exercise Test in Recreational Endurance Runners. Frontiers in Psychology. 2018;9: 1867. https://doi.org/10.3389/fpsyg.2018.01867.

Creative Commons License
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 Revista de Educação Física / Journal of Physical Education