Correlation of Cardiorespiratory Fitness with Body Mass Index, Lipid Profile and Blood Parameters of Brazilian Soldiers: A Cross-Sectional Study
REF / JPE 2022; 91, 1
pdf (Português (Brasil))

Keywords

cardiorespiratory fitness
obesity
dyslipidemia
maximum volume of oxygen consumption

How to Cite

Silva, M. (2022). Correlation of Cardiorespiratory Fitness with Body Mass Index, Lipid Profile and Blood Parameters of Brazilian Soldiers: A Cross-Sectional Study. Journal of Physical Education, 91(1), 16–25. https://doi.org/10.37310/ref.v91i1.2813

Abstract

Introduction: Good cardiorespiratory fitness (RCA) is an essential component of the military profession. A low ACR causes a decrease in physical performance and functional capacity, related to loss of productivity, hospitalizations, and increased mortality rate.

Objective: To analyze the correlations of ACR level (maximum oxygen volume (VO2max) with Body Mass Index (BMI) and blood parameters of soldiers from a military unit of the Brazilian Army.

Methods: Observational, cross-sectional study in a convenience sample composed of 20 male military personnel. The soldiers were divided into two groups according to the indices achieved in the Physical Fitness Test (< 2448 meters in Group A, and ≥ 2448 meters in Group B). Descriptive statistics (mean and standard deviation) were presented and correlation analysis was performed for non-parametric data (Spearman's Correlation). The confidence level for all analyzes was 95%.

Results: A direct correlation of BMI with glucose, triglycerides (TRG), total cholesterol (TC), low density lipoprotein (LDL) and very low-density lipoprotein was observed. There was a significant inverse correlation (p<0.05) of VO2max with BMI, cholesterol (VLDL and HDL) and TRG.

Conclusion: Soldiers with better ACR have a better lipid profile (lower serum levels of Triglycerides, Total Cholesterol, LDL, VLDL and higher serum HDL levels) and lower blood glucose levels.

https://doi.org/10.37310/ref.v91i1.2813
pdf (Português (Brasil))

References

Vaara JP, Groeller H, Drain J, Kyröläinen H, Pihlainen K, Ojanen T, et al. Physical training considerations for optimizing performance in essential military tasks. European Journal of Sport Science. 2022;22(1): 43–57. https://doi.org/10.1080/17461391.2021.1930193.

Lee JH, Seo DH, Nam MJ, Lee GH, Yang DH, Lee MJ, et al. The Prevalence of Obesity and Metabolic Syndrome in the Korean Military Compared with the General Population. Journal of Korean Medical Science. 2018;33(25): e172. https://doi.org/10.3346/jkms.2018.33.e172.

Costa FF da, Montenegro VB, Lopes TJA, Costa EC. Combinação de fatores de risco relacionados à síndrome metabólica em militares da Marinha do Brasil. Arquivos Brasileiros de Cardiologia. 2011;97(6): 485–492. https://doi.org/10.1590/S0066-782X2011005000113.

Damacena FC, Batista TJ, Ayres LR, Zandonade E, Sampaio KN. Obesity prevalence in Brazilian firefighters and the association of central obesity with personal, occupational and cardiovascular risk factors: a cross-sectional study. BMJ Open. 2020;10(3): e032933. https://doi.org/10.1136/bmjopen-2019-032933.

Königstein K, Infanger D, Klenk C, Carrard J, Hinrichs T, Schmidt‐Trucksäss A. Physical activity is favorably associated with arterial stiffness in patients with obesity and elevated metabolic risk. International Journal of Clinical Practice. 2020;74(9). https://doi.org/10.1111/ijcp.13563.

DuBroff R, Malhotra A, de Lorgeril M. Hit or miss: the new cholesterol targets. BMJ Evidence-Based Medicine. 2021;26(6): 271–278. https://doi.org/10.1136/bmjebm-2020-111413.

O’Donnell FL, Stahlman S, Oetting AA. Incidence rates of diagnoses of cardiovascular diseases and associated risk factors, active component, U.S. Armed Forces, 2007-2016. MSMR. 2018;25(3): 12–18.

Carvalho LP, Di Thommazo-Luporini L, Mendes RG, Cabiddu R, Ricci PA, Basso-Vanelli RP, et al. Metabolic syndrome impact on cardiac autonomic modulation and exercise capacity in obese adults. Autonomic Neuroscience. 2018;213: 43–50. https://doi.org/10.1016/j.autneu.2018.05.008.

Carbone S, Del Buono MG, Ozemek C, Lavie CJ. Obesity, risk of diabetes and role of physical activity, exercise training and cardiorespiratory fitness. Progress in Cardiovascular Diseases. 2019;62(4): 327–333. https://doi.org/10.1016/j.pcad.2019.08.004.

Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE. Exercise Capacity and Mortality among Men Referred for Exercise Testing. New England Journal of Medicine. 2002;346(11): 793–801. https://doi.org/10.1056/NEJMoa011858.

Imboden MT, Kaminsky LA, Peterman JE, Hutzler HL, Whaley MH, Fleenor BS, et al. Cardiorespiratory Fitness Normalized to Fat-Free Mass and Mortality Risk. Medicine & Science in Sports & Exercise. 2020;52(7): 1532–1537. https://doi.org/10.1249/MSS.0000000000002289.

Laukkanen JA, Lakka TA, Rauramaa R, Kuhanen R, Venäläinen JM, Salonen R, et al. Cardiovascular Fitness as a Predictor of Mortality in Men. Archives of Internal Medicine. 2001;161(6): 825. https://doi.org/10.1001/archinte.161.6.825.

UK EQUATOR Centre. The EQUATOR Network | Enhancing the QUAlity and Transparency of Health Research. https://www.equator-network.org/ [Accessed 18th August 2022].

WHO. WHO Obesity: preventing and managing the global epidemic. https://portaldeboaspraticas.iff.fiocruz.br/biblioteca/who-obesity-preventing-and-managing-the-global-epidemic/ [Accessed 18th August 2022].

Cooper KH. O Programa Aeróbico para o Bem-estar Total. Rio de Janeiro, RJ: Nordica; 1982.

Kiss P, De Meester M, Maes C, De Vriese S, Kruse A, Braeckman L. Cardiorespiratory fitness in a representative sample of Belgian firefighters. Occupational Medicine. 2014;64(8): 589–594. https://doi.org/10.1093/occmed/kqu138.

Bhaskaran K, dos-Santos-Silva I, Leon DA, Douglas IJ, Smeeth L. Association of BMI with overall and cause-specific mortality: a population-based cohort study of 3·6 million adults in the UK. The Lancet Diabetes & Endocrinology. 2018;6(12): 944–953. https://doi.org/10.1016/S2213-8587(18)30288-2.

Vicente MM, Herrero DC, Prieto JP. Cardiorespiratory Fitness in Spanish Firefighters: Age Differences and Associations Between Fitness-Related Parameters. Journal of Occupational & Environmental Medicine. 2021;63(6): e318–e322. https://doi.org/10.1097/JOM.0000000000002199.

Nodeland M, Klevjer M, Sæther J, Giskeødegård G, Bathen TF, Wisløff U, et al. Atherogenic lipidomics profile in healthy individuals with low cardiorespiratory fitness: The HUNT3 fitness study. Atherosclerosis. 2022;343: 51–57. https://doi.org/10.1016/j.atherosclerosis.2022.01.001.

Vega GL, Grundy SM, Barlow CE, Leonard D, Willis BL, DeFina LF, et al. Association of triglyceride-to-high density lipoprotein cholesterol ratio to cardiorespiratory fitness in men. Journal of Clinical Lipidology. 2016;10(6): 1414-1422.e1. https://doi.org/10.1016/j.jacl.2016.09.008.

Farrell SW, Finley CE, Barlow CE, Willis BL, DeFina LF, Haskell WL, et al. Moderate to High Levels of Cardiorespiratory Fitness Attenuate the Effects of Triglyceride to High-Density Lipoprotein Cholesterol Ratio on Coronary Heart Disease Mortality in Men. Mayo Clinic Proceedings. 2017;92(12): 1763–1771. https://doi.org/10.1016/j.mayocp.2017.08.015.

Tarp J, Grøntved A, Sanchez‐Lastra MA, Dalene KE, Ding D, Ekelund U. Fitness, Fatness, and Mortality in Men and Women From the UK Biobank: Prospective Cohort Study. Journal of the American Heart Association. 2021;10(6): e019605. https://doi.org/10.1161/JAHA.120.019605.

Kunutsor SK, Zaccardi F, Karppi J, Kurl S, Laukkanen JA. Is High Serum LDL/HDL Cholesterol Ratio an Emerging Risk Factor for Sudden Cardiac Death? Findings from the KIHD Study. Journal of Atherosclerosis and Thrombosis. 2017;24(6): 600–608. https://doi.org/10.5551/jat.37184.

Sarzynski MA, Schuna JM, Carnethon MR, Jacobs DR, Lewis CE, Quesenberry CP, et al. Association of Fitness With Incident Dyslipidemias Over 25 Years in the Coronary Artery Risk Development in Young Adults Study. American Journal of Preventive Medicine. 2015;49(5): 745–752. https://doi.org/10.1016/j.amepre.2015.04.022.

Whelton SP, Dardari Z, Handy Marshall C, Ahmed H, Brawner CA, Ehrman JK, et al. Relation of Isolated Low High-Density Lipoprotein Cholesterol to Mortality and Cardiorespiratory Fitness (from the Henry Ford Exercise Testing Project [FIT Project]). The American Journal of Cardiology. 2019;123(9): 1429–1434. https://doi.org/10.1016/j.amjcard.2019.02.009.

Mertens E, Clarys P, Lefevre J, Charlier R, Knaeps S, Deforche B. Longitudinal Study on the Association Between Cardiorespiratory Fitness, Anthropometric Parameters and Blood Lipids. Journal of Physical Activity and Health. 2016;13(5): 467–473. https://doi.org/10.1123/jpah.2015-0378.

Park YMM, Sui X, Liu J, Zhou H, Kokkinos PF, Lavie CJ, et al. The Effect of Cardiorespiratory Fitness on Age-Related Lipids and Lipoproteins. Journal of the American College of Cardiology. 2015;65(19): 2091–2100. https://doi.org/10.1016/j.jacc.2015.03.517.

Autores que publicam nesta revista concordam com os seguintes termos:
  1. Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
  2. Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
  3. Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.